Joint universality of the Riemann zeta-function and Lerch zeta-functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Value-distribution Theorems on Lerch Zeta-functions. Ii

We give corrected statements of some theorems from [5] and [6] on joint value distribution of Lerch zeta-functions (limit theorems, universality, functional independence). We also present a new direct proof of a joint limit theorem in the space of analytic functions and an extension of a joint universality theorem.

متن کامل

An Effective Universality Theorem for the Riemann Zeta Function

Let 0 < r < 1/4, and f be a non-vanishing continuous function in |z| ≤ r, that is analytic in the interior. Voronin’s universality theorem asserts that translates of the Riemann zeta function ζ(3/4 + z + it) can approximate f uniformly in |z| < r to any given precision ε, and moreover that the set of such t ∈ [0, T ] has measure at least c(ε)T for some c(ε) > 0, once T is large enough. This was...

متن کامل

The Lerch zeta function IV. Hecke operators

This paper studies algebraic and analytic structures associated with the Lerch zeta function. It defines a family of two-variable Hecke operators {Tm : m ≥ 1} given by Tm(f )(a, c) = 1 m ∑m−1 k=0 f ( a+k m ,mc) acting on certain spaces of real-analytic functions, including Lerch zeta functions for various parameter values. The actions of various related operators on these function spaces are de...

متن کامل

q-Riemann zeta function

We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...

متن کامل

Joint universality of periodic zeta-functions: continuous and discrete cases

In this paper, we give a survey on universality theorems of the collection of various zeta-functions, when one of them has an Euler product and other has no. We present some results on both, continuous and discrete, cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis: Modelling and Control

سال: 2013

ISSN: 2335-8963,1392-5113

DOI: 10.15388/na.18.3.14012